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“Volatility in markets is at low levels, both actual and
expected, ... to the extent that low levels of volatility may
induce risk-taking behavior ... is a concern to me and to the

Committee.”

Federal Reserve Chair Janet Yellen, 2014.
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What drives risk?

• 2008 happened because of decisions made years earlier

• In 2003 all the signs pointed to risk being low

• The authorities and the private sector thought we were
safe

• And so it was perfectly OK to take extra risk

• But

• “Stability is destabilizing” (Minsky)
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Risk is endogenous
Danielsson–Shin (2002)

• Risk is exogenous or endogenous

exogenous Shocks to the financial system arrive from
outside the system, like with an asteroid

endogenous Financial risk is created by the interaction
of market participants

“The received wisdom is that risk increases in recessions and
falls in booms. In contrast, it may be more helpful to think of
risk as increasing during upswings, as financial imbalances

build up, and materialising in recessions.”
Andrew Crockett, then head of the BIS, 2000
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• Market participants are guided by a myriad of models and
rules, many dictate myopia

• Prices don’t follow random walks in adverse states of
nature

• Because that is when the constraints bind

• Endogenous risk is created by the interaction of human
beings

• All with their own objectives, abilities, resources, biases

• All large market outcomes are endogenous

Risk models underestimate risk during calm times and
overestimate risk during crisis — they get it wrong in all states

of the world
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Two faces of risk

• When individuals observe and react — affecting their
operating environment

• Financial system is not invariant under observation

• We cycle between virtuous and vicious feedbacks

• perceived risk — as reported by risk models
• actual risk — hidden but ever present
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How often do systemic crises happen?

• Ask the IMF–WB systemic crises database (only OECD)

• Every 43 years (17 for UK)

• Best indication of the target probability for policymakers

• However, most indicators focus on much more frequent
events

• Typically every month to every five months
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Data

• Comprehensive database on monthly returns (1800 to
2010, 60 countries)

• Global Financial Data
• On average 62 years of historical observations per

country

• Banking crises (Reinhart and Rogoff)

• Binary indicator of whether a banking crisis starts in a
given year and a given country

• Risk-taking (credit-to-GDP)

• Control variables
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Obtaining volatilities

• GARCH? No

• Realized volatility (standard deviation of 12 past monthly
real returns)

• Wars and hyperinflations result in extremes. We know
that realized (and GARCH) volatilities are not robust in
presence of extremes, and so

• Winsorized — ( +/− 0.5% of tails)
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Volatility decomposition

• We could use the annual volatility (σi ,t) as a crisis
predictor, or

• Volatility decomposed into trend and deviation from trend

• Different countries have different volatility levels
• High volatility for a country and time could be low or

typical in another period or country
• Deviation from the prevailing volatility regime

• High volatility: volatility that is above the trend

• Low volatility: volatility that is below the trend

• One could use Markov switching, but that is a bad idea,
instead:
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Hodrick and Prescott (HP) filter
• Smoothing parameter, λ = 5000, which quantifies the
degree to which volatility deviates from its trend

• Two sided (run recursively, past data used for current

trend)

min
{τt(λ)}

T
t=1

T
∑

t=1

[σt − τt(λ)]
2+

λ
T−1
∑

t=2

{[τt+1(λ)− τt(λ)]

− [τt(λ)− τt−1(λ)]}
2
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σt = τt + δt

• Low and high volatilities

δhight =

{

σt − τt if σt ≥ τt
0 otherwise,

δlowt =

{

|σt − τt| if σt < τt
0 otherwise.
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Control variables — Xt,i

• Lags of the crisis dummy

• logGDP: GDP per capita to control for the economic
development of a country

• INFLATION: annual CPI inflation rate

• ∆PD/GDP: change in public-debt to GDP ratio

• POLCOMP: the degree of political competition as a
proxy for institutional quality

• Time series and cross sectional fixed effects
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Econometric Model
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• The dependent variable is the start of a crisis,

Ci ,t

i country index
t starting year of a crisis

• Moving average variables

z i ,t−1 to t−L =
1

L

L
∑

j=1

zi ,t−j , z = C , δ,X

• L1, L2 are the first and last lags, respectively

• Baseline: L1 = t − 1, L2 = t − 5
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Panel-logit regressions

Ci ,t = β1C i ,L1 L2

+ β2δhighi ,L1 L2

+ β3δlowi ,L1 L2

+ β4X i ,L1 L2

+ εi ,t
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Volatility and risk-taking

Ci ,t I II III IV

σi ,t−1 to t−5 0.07** -0.01

δhigh
i ,t−1 to t−5 0.26** 0.20

δlow
i ,t−1 to t−5 0.30*** 0.31***

Control No Yes No Yes
variables
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So

• Volatility predicts crises but not when control variables
are included

• High volatility predicts crises but not when control
variables are included

• Low volatility predicts crises including when control
variables are included

• A 1% decrease in volatility below its trend translates into
a 1.01% increase in the probability of a crisis

• Economic importance increases monotonically and
reaches a maximum at L = 5 and decreases then after
dies out after L = 10
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Volatility and risk-taking

• We use credit-to-GDP ratio gap (the difference between
the credit-to-GDP ratio and its long-run trend) (and
credit growth) as a proxy for risk-taking

Ri ,t = β1δ
high

i ,L1 L2
+ β2δ

low

i ,L1 L2
+ β3X i ,L1 L2 + εi ,t
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CR GAPBIS
i ,t

∆logCRBIS
i ,t

CR GAPST
i ,t

∆logCRST
i ,t

δ
high
i ,t−1 to t−L

-1.66 0.02 -0.01*** -0.91

δlow
i ,t−1 to t−L

4.53*** 0.97*** 0.01** 1.32**

• Low levels of financial volatility are followed by credit
booms
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Conclusion
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Summary

1. Volatility and high volatility weakly predict crises

2. Low volatilities strongly predict crises 5 to 10 year into
the future

3. Prolonged periods of low volatility lead to excessive risk
taking

4. Empirical support of Minsky’s financial instability
hypothesis

⇒ “Stability is destabilizing”, Minsky (1992)
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